

SIP-adus Workshop 2018

A Traffic-based Method for Safety Impact Assessment of Road Vehicle Automation

Tokyo, 14th November 2018

Dr.-Ing. Adrian Zlocki, Christian Rösener, M.Sc., Univ.-Prof. Dr.-Ing. Lutz Eckstein

Forschungsgesellschaft Kraftfahrwesen mbH Aachen

Motivation Public View on Automated Driving

What the Hell Are These People Doing Around

How SAFE is Automated Driving?

Arizona suspends Uber's driverless car testing

Research Question What is the safety level of automated driving?

Methodology **A Traffic-based Method for Safety Impact Assessment** of Road Vehicle Automation

2017/11/16 Slide No. 2

Evaluation Methodology

Impact Assessment vs. Safety Assurance

#17820 · 17zl00xx.pptx

Slide No. 3 2017/11/16

Analysis of Automated Driving Field Test Data Scenario Classification of Real-World Data

Source: Eckstein, L., Zlocki, A.: Safety Potential of ADAS - Combined Methods for an Effective Evaluation, 23rd ESV 2013, Seoul, 2013

Impact Assessment of Automated Driving Driving Scenarios from Accident Type

Example: Passive Cut-In

Impact Assessment of Automated Driving Driving Scenarios from Accident Type

Approach: The **types of driving scenarios**, respectively physical accident constellations, do not change with automated driving.

The **frequency of occurrence** and the **severity** of these driving scenarios may change with automated driving.

Impact Assessment of Automated Driving

Definition of Methodology for Impact Assessment

INSTITUT FÜR KRAFTFAHRZEUGE

RWITHAACHEN UNIVERSITY

tka >

Impact Assessment of Automated Driving

1 Definition of automated driving function and 2 scenarios

Automation level (SAE): 3

Operational design domain (ODD):

Operation domain:

(130)

(2)

Relevant driving scenarios:

Impact Assessment of Automated Driving

Effectiveness Field and Scenario Classification (3

JR KRAFTFAHRZEUGE **TKa**

INSTITUT FÜR KRAFTFAHRZEUGE

Driving scenario-based estimation of effective. field

3 Accidents in Germany according to ODD

Accidents in Germany in 2016

308.145 A(P)

INSTITUT FÜR KRAFTFAHRZEUGE RENTHAACHEN UNIVERSITY

Accidents in domain "Motorway" 19.010 A(P)

#17820 · 17zl00xx.pptx

Driving scenario-based estimation of effective. field

3 Input data for scaling-up and simulation

Impact of automated driving function

Identification of ∆ frequencies of driving scenarios **4** FOT-data

Impact Assessment of Automated Driving
Identification of
 \[A] Frequency from FOT Data

Identification of ∆ frequencies of driving scenarios4Traffic simulation

△ Severity in driving scenarios by re-simulation
5 Simulation framework

Human driver performance models from driving simulator study/FOT for reference

Driving scenario "passive cut-in"

 Δ Severity

Safety Impact Assessment of Automated Driving

6 Impact Assessment Results

Safety Impact Assessment of Automated Driving

6 Impact Assessment Results

#17820 · 17zl00xx.pptx

Safety Impact Assessment of Automated Driving 6 Impact Assessment Results

Safety Impact Assessment of Automated Driving 6 Key results

 Motorway-Chauffeur can reduce 30 % of all accidents on German motorways at a market penetration of 50 %. This equals 2 % of all accidents on German roads.

 The Urban Robot-Taxi can avoid 26 % of all accidents with personal injury within city-limits at a market penetration of 50 %. This equals 17 % of all accidents on German roads.

However, there will be accidents remaining that automated vehicles cannot avoid (due to weather conditions or physics). But we can show that a human cannot avoid these accidents either. Piloting Automated Driving on European Roads L3Pilot – Real World Data for Impact Assessment

Pilot Driving Automation

- Large-scale Level 3 piloting
- 1,000 test drivers,100 vehicles in 11 European countries
- EC funded in Horizon 2020
- 34 partner
- Budget: 68 € Mio., Funding: 36 € Mio.
- Website: http://www.l3pilot.eu

L3Pilot Evaluation Levels

L3Pilot Evaluation Workflow

Summary

- Prospective safety impact assessment for automated driving requires new methodologies
- Automated driving provides many challenges with regards to impact assessment since limited real world data is available yet and many new aspects (e.g. user-interaction) needs to be taken into account
- Safety impact assessment shows positive results with different automation function
- Current research in L3Pilot start data collection for safety impact assessment
- Safety Impact Assessment in L3Pilot will provide results based on data from vehicles combined with simulation for the first time

THANK YOU FOR YOUR ATTENTION!

QUESTIONS?

Dr.-Ing. Adrian Zlocki

fka Forschungsgesellschaft Kraftfahrwesen mbH Aachen Steinbachstr. 7 52074 Aachen Germany

Phone+49 241 80 25616Fax+49 241 8861 110

Email zlocki@fka.de Internet www.fka.de

#17820 · 17zl00xx.pptx